Chapter 6¢ List Manipulation

List

A Alistis a standard data type of Python that can stase@uence of values belonging to any

type.
A The Lists are depicted through square bracketg, following are some lists in Python:

[] # list with no member, empty list

[1,2,73 # list of integers

[1,25,3.7,9] #listof numbers (integers and floating point)

oWl Q T MligtOfcharactes? OQ 6

OWFQ I M I WoQ I odp I WISNRQS ltAad 27
OWYhySQ = Weg2Q I WEKNBSQS | fA&d 2F adN

A Lists aremutable (i.e. modifiable) you can change elements of alistin a place. In other
words, the memory address of a list will not chamegen after you change its values.

Creating Lists
A To create a list, put the list elements in square brackets. E.g.
n=[1,2,6]
Empty List

A ¢KS SYLlie tAaG Aa ® 8d LG Aa faldivazAcahlalcoSy G 2 F n
create an empty listas :

L = list()
Nested List
A Alistcan have an elementin it, which itself is alist. Such a list is naléeetl list e.g.
L1=[3,4,[56], 7]

Creatimg List from Existing Sequence

- Alistfrom a given sequence(strings, tuples and lists) can be created as per following syntax:
L = list(<sequence>)

e.g.

>>> a=list('hello')

- |

[!h!r !e!r !l!r !l!r !D!]
>>> print (a)

[!h!r !e!r !l!r !l!r !D!]

1] 29

A This method of creating lists of single charactersogie digits via keyboard input. Consider
the code below:

>;> 11 = list (input ("Enter list elements:"))
Enter list elements:234567
x> 11

[!2!r !3!r !4!r !5!r '6'1 !'_Illf!:l

A Most commonly used method to input lists is eval(input()) as shown below:

list = eval(input("Enter list to be added:")) «———— eval() tries to identify type by looking at
print ("list you entered :", list) the given expression (Read on next page)

when you execute it, it will work somewhat like :

Enter list to be added:[67, 78, 46, 23]
list you entered : [67, 78, 46, 23]

[A&dQ

[N
(o]
—h
w»
_<
w»
<5
[N
Q)¢
(@)

62 6l& AYRSEAYST

list1 =['a’, ‘e’, ', 0, U]
Forwardindexing >0 1 2 3 4

..... e e s

listf[0] = "a" = fist1[-5] |
- , list1[1] = e’ = list1[-4] |
lst1Sln a8 1 02 Gl <‘; listi[2) =i = listf[-3] |

-5 4 -3 -2 -1 Qackward indexing| ™ | Jist1[3] =0 = list1[-2]
S — list1[4] = ‘u’ = list1[-1]

2o e SR RIS R

(a) List Elements’ two way indexing

1 1 3 Lists are stored in memory exactly like strings, except
{ 0 . | L that because some of their objects are larger tzan i
— others, they store a reference at each index s
! : . e instead of single character as in strings. ;
1 2 —t—> “good” ' . :
: Each of the individual items of the list are g
1 3 ——> 4.59 ;

stored somewhere else in memory.

IR 7 P~ e e g g R e oo

(b) How lists are internally organized

Page?2|29

Accessing Individual Elements

A Theindividual elements of alist are accessed through their ind&xgs.

>>> vowels =['a','e',"1",'a","u"]
>>> vowels[0]

!a!

>>> vowels[-5]

!a!

A Ifyou give index value outside the legal indices (0to ledigihclength to-1), Python will
raise Index Error :

>>> vowels =['a','e',"1",'0", "u"]
>>> vowels[D]
Traceback (most recent call last):
File "<pyshell#4>", line 1, in <module>
vowels|[D]
IndexError: list index out of range

Difference between Strings and Lists

A Strings are nomutable, while lists are mutable. You cannot change individual elements of a

string in place, but Lists allow you to do dde following statement is used to change
individual element in the list:

L[i] = element
e.g.
=x> vowels = [a,'e,7,0,u]
==> vowels
[Ia.l-I IEIJ I_il-I Il:lllI ILII]
=x> vowels[0] = A
==> vowels
[IAI.I IEI.I I.il.I Il:ll.I II-II]

Traversing a List

A Traversal means accessing and processing each element of it.

A The for loop makes it easy taverse or loop ovethe itemsin a list, as per following
syntax:

for <item>in <list>:
process each item here

3| 29

e.g.

L=[P,Y,"t, N, o, n
ainl:
print(a)

The above loop will produce result as:

s T o B S e |

How it works

A The loop variablain above loop will be assigned the List elements, one ata time. So, loop
GINRAFofS || gAff 0SS adaA3dySR Wt Q Ay FANRG AdS
iterationag Af £ 3ASG St SYSyd weQ FyR weQ gAaftf 0SS LIN

Traversing a List using index value

forindexinrange (len(L)):
process List[index] here
e.g.

L=[q,W,e,", Y]
length = len(L)

a in range(length) :

print("value at index",a, "is",L[a])

Output produced by above code:

value at index 0 is g
value at index 1 is w
value at index 2 is e
value at index 3 is r
value at index 4 is t
value at index 5 is y

COMPARING LISTS

A Conparison between lists can be done using standard comparison operators of Python, i.e. <
, >, == ,l=eftc.

A Inorderto make two list equal, each corresponding element must compare equal and the two
sequences must be of the same type. having comparabléypes of values.

41 29

e.g.

=xx L1=[1, 2, 3]
=xxl2=[1,2,3]
#xx L3=[4,5, 8]
#xx L4 =[32", 0,]
2xx L1==L2
True
=22 L1 ==1L3
False
s2x L1 == L4
False

A Python gives the final result of negguality comparisons (<, >, |==)as soon as it gets a result

AY GSN¥Ya 2F ¢NHSkCIfasS FNRY O2NNBalLRyRAy3a St
are equal, it goes on to the nerlement, and so on, until it finds elements that differ.
Subsequent elements are not considered.

Table7.1 Non-equality Comparison in List Sequences

L Comparison Result Reason x

[1, 2, 8, 9] < [9, 1] True Gets the result with the comparison of corresponding fiy
elements of two lists

1< 9 is True

[1, 2, 8, 9] < [1, 2, 9, 1] True Gets the result with the comparison of corresponding third
elements of two lists

8 < 9 is True

[1, 2, 8, 9] < [1, 2, 9, 10] True Gets the result with the comparison of corresponding third
: elements of two lists

8 < 9 is True

[1, 2; B, 91«41, 2,8, 4] False Gets the result with the comparison of corresponding fourth
elements of two lists

9< 4 is False

So, for comparison purposes, Python internally compares individual elements of two lists,
applying all the comparison rules that you have read earlier. Consider following code :

»»>a=[2, 3] >>>a>b

»»>b=[2, 3] False

/// o ekl] >>>d>a Notice for comparison purposes,
>>>d=[2.0, 3.0] False I - Python ignored the types of elements
»»>e=[2, 3, 4] St H == and compared values only
wiilidin True

True v

$5> 3 == >>>ax<e

False e

Foe two lists to be equal, they must have same number of elements and matching
values (recall int and float with matching values are considered equal)

Page5]|29

List Operations

1. Joining Lists
The concatenation operator + , when used with two lists, joins two lists.

s> 1stl = [1,3,5]
s> 1st2 = [6,7, 8]

s>y 1st1+ 1st2
— " The + operator concatenates two lists
i, 3,5, 6, 7, 8] and creates a new list

As you can see that the resultant list has firstly elements of first list Ist1 and followed by
elements of second list Ist2. You can also join two or more lists to form a new list, &y

»»» 1stl=[10, 12, 14]

»> 1st2 = [20, 22, 24]

i Ista= 20, 92, 34] ‘/—"'-" The + operator is used to concatenate
»> 1st = 1stl + 1st2 + 1st3 three individual lists to get a new

5> 1st combined list Ist.

(10, 12, 14, 20, 22, 24, 30, 32, 34]
The + operator when used with lists requires that both the operands must be of l.ist types. You
wnnot add a number or any other value to a list. For example, following expression will result
into error ;

list + number
list + complex-number
list + string

Consider the following examples

>>>1stl=[10, 12, 14] See errors generated when anything

>>>1stl+2 / other than a list is added to a list

Traceback (most recent call last):
File "<pyshell#42>", line 1, in <module>
1stli+2
TypeError: can only concatenate list (not "int") to list

>>> 1stl + "abc"

Traceback (most recent call last):
File "<pyshell#44>", 1line 1, in <module>
1stl + "abc"
TypeError: can only concatenate list (not "str") to list

2. Repeating or Replicating Lists

* Operator is used to replicate a list specified number of tineeg,

Page6]| 29

=== L1=[1,2,3]
e L1%2
[1, 2, 3,1, 2, 3]

Slicing the Lists
List Slices are the sub part of a list extracted out.You can use indexes of list elements to

create listslices as per following format:

seq = Ldtart: stop]
The above statementwill create alist slice namely seq having elements of list L on indexes
AGFNIT aGFNIbmm = a0 NIbHEIXXPZad2Ld

> w

A Considerthe following example:

>>> 1st =[10, 12, 14, 20, 22, 24, 30, 32, 341
»»>.seq=1st [3:-3]

>>> seq

[20, 22, 24]

>>>seq[1] = 28 q\ |
>>> seq Trying to modify an element of seq in place ;

and it successfully does because the list slice
[20, 28, 24] seq is a list in itself.

A For the start and stop given beyond list limits in alist slice (i.e., dadarids), Python simply
returns the elements that fall between specified boundaries, if any, without raising any error.

For example, consider the following :

. Giving upper limit way beyond the size of the
20, 22, 24, 30, 32, 34] list, but Python return elements from list falling
in range 3 onwards <30

119, 12, 14, 20. 22. 24. 38 T Giving lower limit much lower, but Python
SRR RSN, 1N N2] returns elements from list falling in range —15 onwards <7

i
2 P
»>11(2,3,4,5,6,7, 8] Legal index range is 0..6 and ~7 ... -1
»»>1L1[2:5]}
(4,5,61
>>>L1[6:10] T One limit is out of bounds
[8] o No error ! Python returns a sub-list as per given range
>>>L1[10 : 20] <+
[] T~ Both limits are out of bounds
[]e—no

. Python gives no error and returns an empty sequence as
no element of L1 has index falling in range of 10 to 20.

Page7]|29

A List also support slice steps. That is, if you want to extract, not consecutive but every other
elementof the list, there is a wayu ¢ the slice stepsThe slice steps are used as per

following format:

seq = L[start : stop : step]

, e examples to understa : . Tt VI ISTL with el
consider som P nd this, :z:gng between inors set:s
i ft0p, not including stop,
y»» 15t ; IPping step.q elements in’
10, 12, 14, 20, 22, 24, 30, 32, 34] | _etwggq._ :
é,"'~..;.~\
S~

~—— {nclude every 2nd element, e, skip | elem
in between. Check resulting list slice o

sy 1st[0:10: 2]

[10, 14, 22, 30, 34] ®eeeee, L
e Include eve 3rd element, i
sy 1st[2:10 : 3] s betuoen Ty Srd element, i.e., skip 2 elements

[14, 24, 34]

4 \ No start and stop given. Only step is given as 3. That is, from
»y1st[::3] the entire list, pick every 3rd element for the list slice.

[10, 20, 30]

Consider some more examples :
Seq=1[::2] # get every other.item, startingwith the first
RQ=Lf5:52] # get every other item, starting with the sixth element, i.e., index 5

Reversing a List

e.g.
=»> List=[5,6,8,11, 3]
=re List[1:-1]

[3, 11, 8, 6, 5]

Using Slices for List Modification
A You can use slices to overwrite one or moredisiments with one or more other elements.

>»> L = ["one", "two", "THREE"]
s3> L[8:2] = 8; 1] #—srrr"

assigning new values to list slice

e — Notice, what the list changes to.
[0, 1, "THREE"] (=

>>> L =["one", "two", "THREE"]

>>>L[0:2] ="a"
> L

["a", "THREE"]

;. Notice, what the list changes to.

Page8]|29

Working with Lists

Deleting Elements from a List

A Thedel statement can be used to remove an individual item, or to remove all items
identified by aslice. lis to be used as per syntax given below:

delList [<index>] # to remove element at index
delList[<start> : <stop>] # to remove elements inlistslice

A The pop() methodan be used with Listand it removes an individual item and returns it. The
pop() methodis used as per following format:

List.pop(<index>) # index optional; if skipped, last elementis deleted.

9| 29

