
P a g e 1 | 29

Chapter 6 ς List Manipulation

List

Á A list is a standard data type of Python that can store a sequence of values belonging to any

type.
Á The Lists are depicted through square brackets, e.g. following are some lists in Python:

[] # list with no member, empty list

[1 , 2 , 3] # list of integers

[1, 2.5 , 3.7 , 9] # list of numbers (integers and floating point)

ώΨŀΩ Σ ΨōΩ Σ ΨŎΩ ϐ # list of characters

ώΨŀΩ Σ м Σ ΨōΩ Σ оΦр Σ ΨȊŜǊƻΩϐ Іƭƛǎǘ ƻŦ ƳƛȄŜŘ ǾŀƭǳŜ ǘȅǇŜǎ

ώΨhƴŜΩ Σ Ψ¢ǿƻΩ Σ Ψ¢ƘǊŜŜΩϐ І ƭƛǎǘ ƻŦ ǎǘǊƛƴƎǎ

Á Lists are mutable (i.e. modifiable) , you can change elements of a list in a place. In other
words, the memory address of a list will not change even after you change its values.

Creating Lists

Á To create a list, put the list elements in square brackets. E.g.

 n = [1,2,6]

Empty List

Á ¢ƘŜ ŜƳǇǘȅ ƭƛǎǘ ƛǎ ώ ϐΦ Lǘ ƛǎ ŜǉǳƛǾŀƭŜƴǘ ƻŦ л ƻǊ Ψ Ψ ŀƴŘ ƛǘ Ƙŀǎ ǘǊǳǘƘ ǾŀƭǳŜǎ ŀǎ false. You can also
create an empty list as :

 L = list()

Nested List

Á A list can have an element in it, which itself is a list. Such a list is called nested list, e.g.

 L1 = [3, 4 , [5,6], 7]

Creating List from Existing Sequence

- A list from a given sequence(strings, tuples and lists) can be created as per following syntax:

 L = list(<sequence>)

e.g.

P a g e 2 | 29

Á This method of creating lists of single characters or single digits via keyboard input. Consider
the code below:

Á Most commonly used method to input lists is eval(input()) as shown below:

[ƛǎǘ 9ƭŜƳŜƴǘǎΩ ǘǿƻ ǿŀȅ ƛƴŘŜȄƛƴƎ

P a g e 3 | 29

Accessing Individual Elements

Á The individual elements of a list are accessed through their indexes. E.g.

Á If you give index value outside the legal indices (0 to length-1 or ςlength to -1), Python will
raise Index Error :

Difference between Strings and Lists

Á Strings are not mutable, while lists are mutable. You cannot change individual elements of a

string in place, but Lists allow you to do so. The following statement is used to change
individual element in the list:

L[i] = element

 e.g.

Traversing a List

Á Traversal means accessing and processing each element of it.

Á The for loop makes it easy to traverse or loop over the items in a list, as per following
syntax:

 for <item> in <list> :

 process each item here

P a g e 4 | 29

e.g.

 The above loop will produce result as:

How it works

Á The loop variable a in above loop will be assigned the List elements, one at a time. So, loop

ǾŀǊƛŀōƭŜ ŀ ǿƛƭƭ ōŜ ŀǎǎƛƎƴŜŘ ΨtΩ ƛƴ ŦƛǊǎǘ ƛǘŜǊŀǘƛƻƴ ŀƴŘ ƘŜƴŎŜ ΨtΩ ǿƛƭƭ ōŜ ǇǊƛƴǘŜŘ Τ ƛƴ ǎŜŎƻƴŘ
iteration, a ǿƛƭƭ ƎŜǘ ŜƭŜƳŜƴǘ ΨȅΩ ŀƴŘ ΨȅΩ ǿƛƭƭ ōŜ ǇǊƛƴǘŜŘΤ ŀƴŘ ǎƻ ƻƴΦ

Traversing a List using index value

 for index in range (len(L)) :

 process List[index] here

 e.g.

Output produced by above code:

COMPARING LISTS

Á Comparison between lists can be done using standard comparison operators of Python, i.e. <

, > , == , != etc.

Á In order to make two list equal, each corresponding element must compare equal and the two

sequences must be of the same type i.e. having comparable types of values.

P a g e 5 | 29

e.g.

Á Python gives the final result of non-equality comparisons (< , > , !==)as soon as it gets a result

ƛƴ ǘŜǊƳǎ ƻŦ ¢ǊǳŜκCŀƭǎŜ ŦǊƻƳ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ŜƭŜƳŜƴǘǎΩ ŎƻƳǇŀǊƛǎƻƴΦ LŦ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ŜƭŜƳŜƴǘǎ

are equal, it goes on to the next element, and so on, until it finds elements that differ.

Subsequent elements are not considered.

P a g e 6 | 29

List Operations

1. Joining Lists

The concatenation operator + , when used with two lists, joins two lists.

2. Repeating or Replicating Lists

* Operator is used to replicate a list specified number of times, e.g.

P a g e 7 | 29

3. Slicing the Lists

Á List Slices are the sub part of a list extracted out.You can use indexes of list elements to

create list slices as per following format:

 seq = L [start : stop]

The above statement will create a list slice namely seq having elements of list L on indexes

ǎǘŀǊǘΣ ǎǘŀǊǘҌм Σ ǎǘŀǊǘҌнΣΧΧΦΣǎǘƻǇ-1.

Á Consider the following example:

Á For the start and stop given beyond list limits in a list slice (i.e., out of bounds), Python simply

returns the elements that fall between specified boundaries, if any, without raising any error.

P a g e 8 | 29

Á List also support slice steps. That is, if you want to extract, not consecutive but every other

element of the list, there is a way out ς the slice steps. The slice steps are used as per

following format:

 seq = L[start : stop : step]

Reversing a List

e.g.

Using Slices for List Modification

Á You can use slices to overwrite one or more list elements with one or more other elements.

P a g e 9 | 29

Working with Lists

Deleting Elements from a List

Á The del statement can be used to remove an individual item, or to remove all items

identified by a slice. It is to be used as per syntax given below:

del List [<index>] # to remove element at index

del List[<start> : <stop>] # to remove elements in list slice

Á The pop() method can be used with List and it removes an individual item and returns it. The

pop() method is used as per following format:

 List.pop(<index>) # index optional; if skipped, last element is deleted.

